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We propose a mapping to study the qualitative properties of continuous 
biochemical control networks which are invariant to the parameters used 
to describe the networks but depend only on the logical structure of the 
networks. For the networks, we are able to place a lower limit on the 
number of steady states and strong restrictions on the phase relations 
between components on cycles and transients. The logical structure and the 
dynamical behavior for a number of simple systems of biological interest, 
the feedback (predator-prey) oscillator, the bistable switch, the phase 
dependent switch, are discussed. We discuss the possibility that these tech- 
niques may be extended to study the dynamics of large many component 
systems. 

1. Logical vs. Continuous Models and Biological Observables 

So far it has proved impossible to develop general techniques which may be 
applied to find the asymptotic behavior of complex chemical systems. 
Despite the difficulties a number of important properties of complex chemical 
kinetic schemes have been demonstrated. They include the following. 

(i) Oscillations cannot occur for reaction schemes involving only 
monomolecular reactions (Bak, 1963). 

(ii) Oscillations can appear only far from equilibrium where the Onsager 
reciprocity relations no longer hold (Prigogine, 1961). 

(iii) Some chemical reactions occurring in the homogeneous phase are 
103 
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unstable with respect to small perturbations of concentration and 
evolve to an inhomogeneous asymptotic state (Turing, 1952). 

In addition to these general results a number of specific chemical reaction 
schemes have been proposed and analyzed which display the interesting 
properties of oscillation (Lotka, 1920; Higgins, 1967), multiple steady states 
(Spangler & Snell, 1961), hysteresis (Edelstein, 1970) and spatially periodic 
asymptotic states (Turing, 1952; Prigogine & Nicolis, ‘1971). 

Despite these important advances, the rudimentary nature of our knowledge 
about the properties of non-linear differential equations necessitates analyzing 
each reaction separately using cumbersome methods which have proved 
impractical to apply to all but the simplest systems. The limitations which 
appear to be inherent in the techniques of non-linear analysis make it 
imperative that alternate methods be developed which may be used to give at 
least qualitative information about the dynamic behavior of complex 
chemical systems. 

In chemical kinetics progress has been made by studying chemical con- 
centrations as a function of time. The kinetic equations and mechanisms of a 
large number of simple chemical reactions have been determined. Application 
of classical techniques to the study of simple enzyme reactions (Atkinson, 
1966) as well as the gene control systems (Yagil & Yagil, 1971) has proved to 
be fruitful. However, the extremely low cellular concentrations of critical 
compounds as well as the need for monitoring the concentration of a large 
number of components as a function of time, will pose substantial difficulties 
to future investigators of the properties of complex chemical systems, such as 
are found in biochemical control networks. 

However, a number of global biological observables, which have been 
experimentally studied may also be subject to theoretical analysis. They 
include the following. 

(i) Localization of activity-although cells undergo large reversible 
modulations of both morphology and enzyme composition during 
their lifetime, they may in general be readily classified as belonging 
to one of a small number of different cell types which are found in a 
given organism. 

(ii) The number of cell types-the number of cell types of all organisms 
of a given species are the same. The number of cell types apparently 
increases as the number of genes of organisms increases. 

(iii) Phase relationships between components-activated puffing patterns 
of genes have been observed for a variety of cells in fruitflies. Different 
cell types have different characteristic puffing patterns (Berendes, 
1968). 
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(iv) Limited potential for differentiation-in development in animals 
there is only a limited time during which the path of differentiation of 
a given cell may be altered by manipulation. There are also only a 
limited number of cell types to which any particular cell can be 
transformed. Similarly in transdetermination studies on fruitflies it 
has been observed that imaginal disks for different structures may be 
subject only to a limited number of transitions, e.g., a haltere disk 
can form a wing but not an eye (Gehring, 1968). 

The global, topological nature of these observables apparently places 
their study outside of the range of classical chemical kinetics. A theory which 
has been developed explicitly to study these observables has recently been 
proposed by Kauffman (1969, 197la,b). The assumption is made that key 
elements (genes) in the biochemical control networks of cells may be modeled 
as switches and that each component realizes a randomly chosen Boolean 
function on two or three randomly chosen inputs. If the assumption that an 
asymptotic state of the discrete switching network corresponds to a cell type 
of an organism is made, the same properties listed above can be studied for 
these model networks. Good qualitative agreement has been found between 
the global properties of the model networks and the corresponding properties 
of cells. 

The assumption, that genes may be idealized as switches, invariably strikes 
those with a firm foundation in chemical thermodynamics as wrong. Chemical 
reactions at the metabolic level do not disobey the laws of thermodynamics. 
However, as a consequence of the cooperative interactions of key control 
elements (e.g. enzymes, repressors), the coupling of energy rich compounds 
into reactions and large displacement from thermodynamic equilibrium, 
many important reactions appear in vivo to be nearly irreversible and to 
foIlow a sigmoidal rate dependence on the concentration of key metabolites 
in the cell (Monod & Jacob, 1961; Atkinson, 1966). This behavior is well 
documented both in enzyme (Monod, Wyman & Changeux, 1965) and gene 
(Yagil & Yagil, 1971) control systems. 

The extent to which continuous biochemical networks of cooperative 
components may be modeled by logical networks has not been thoroughly 
explored. Sugita (1963) has presented logical equivalents of some simple 
networks proposed by Monod & Jacob (1961). However, he left largely 
unexplored the possibility that differences might arise between the behavior 
of the logical and continuous systems and also did not investigate the 
extensions of the logical descriptions to more complex systems of many 
elements. Rosen (1968~) and Arbib (1966) have discussed some formal 
similarities between the properties of continuous and discrete biochemical 
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networks. Other literature has been thoroughly reviewed by Rosen (1968b). 
In a recent study we explored the properties of some simple networks of 

catalytic components which were localized in compartments and produced 
diffusible chemicals which controlled the activities of ot!ler components via 
a sigmoidal control function (Glass & Kauffman, 1972). One of the principle 
findings of that work was that the qualitative behavior of th;: systems was 
largely independent of the precise form of the sigmoidal control function. 
For example, for a simple network corresponding to a feedback inhibition 
loop it was found that neither the period nor tilt phase ;zlationships of 111~ 
oscillation of the components was markedly altered by a change of the control 
functions from the discontinuous Heavisidc step funciion to the more 
realistic continuous Hill function. This observation strongly suggests that 
switching networks may be used to study continuous networks which model 
realistic biological control systems. 

In the present work we explore the relationships which exist between a class 
of non-linear equations representing biochemical control networks and 
homologous switching networks. After developing the equations which 
describe these homologous systems in section 2, we present a mapping in 
section 3 which allows us to study qualitative features of the continuous system 
without explicitly solving the equations of motion. In ssction 4 and 5 we 
discuss the application of these techniques to some simple biological systems 
and indicate how information may be determined about the important 
biological observables we have discussed above, the number of asymptotic 
states, phase relationships between components and transitions between 
asymptotic states. Our analytical results are presented in the Appendices in 
which we develop some formal qualitative properties of continuous systems 
which realize Heaviside functions on their inputs. 

2. Continuous Biochemical Networks and their Discrete Homologues 

We are interested in studying the dynamics of arbitrarily cross coupled 
biochemical networks in which the rates of synthesis of key metabolites are 
regulated by the concentrations of control molecules in the medium. Further, 
although synthesis is localized, key metabolites are assumed to undergo 
transport through the system as well as modification by biochemical trans- 
formation. We have proposed (Glass & Kauffman, 1972) that these systems 
may be represented by a series of coupled non-linear equations in which we 
explicitly consider (i) regulation of synthesis of key metabolites by non-linear 
control functions, called Fk, (ii) exponential decay of key metabolites at a rate 
proportional to their concentration and (iii) transport of metabolites by 
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diffusion. If we assume that there are N components in a spatially linear 
system of M compartments, we find 

dXk(J) 
__ =d~&kFk [X,(J), Xj(J)]-YkXk(J)+Dk 

dt 
X [x’,(J - 1) -2x,(J) +X,(J + I)], 

J= l,M, 

k = l,N, (1) 
where X,(J) is the concentration of the kth component in the Jth compart- 
ment; /2,, yk and D, are the production, decay and diffusion constants, 
respectively, for the kth component; P, is the compartment in which synthesis 
of the kth component is localized; the delta function Ji, j is one if i = j and 
is zero otherwise; and the boundary conditions 

X,(O) = X,(1 17 

x,(M + 1) = X,(Rf), k=l,N (2) 
ensure that there is no flow out of the system. 

We have found that when the control functions, Fk, are continuous homo- 
logues of logical control functions that some qualitative properties of equa- 
tion (1) may be studied without solving the equations explicitly. In logical 
switching networks time is quantized and the state of each component is 
0 or 1 at each time. The state of any component may be determined if the 
states of its inputs and if the logical function which it realizes on these inputs 
are known. Let us consider which logical functions are appropriate to 
represent observed biochemical control relationships. 

In the studies of the regulation of the synthesis of inducible enzymes, for 
example, /3-galactosidase, the enzyme is normally produced at a low basal 
rate. As the concentration of the inducer, in this case a metabolic derivative 
lactose, is increaTed through some critical concentration range, the synthesis 
of the enzyme rapidly increases to a maximal rate (Yagil & Yagil, 1971). The 
resulting curve is characteristically S-shaped having distinct upper and lower 
asymptotes and an intermediate region of rapid rate change, We may general- 
ize this rate dependence in terms of a bounded, monotonic, sigmoidal 
function, 

dX, 
- = SW,), 
dt 

0 6 S(X,) < 1. (3 

where we have called a-galactosidase, X2, and lactose, X,. A functional form 
which has often been found to adequately represent the experimental data 
is the Hill function, 

(4) 
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where n is the Hill coefficient and Oi is a threshold parameter for regulation of 
synthesis of the ith component. Regulatory functions of this type are suitable 
for substitution for F, in equation (1). The relationship X, induces XL is 
schematically represented in Fig. l(a). In Fig. I(b) we display the truth table 
for the discrete system which corresponds to induction, if X, is 1 at time r, 
X2 will be 1 at time T+ 1, and if X, is 0 at time 7, X2 will be 0 at z+ I _ 111 
similar fashion, the relationship X, represses (inhibits) the production of X, 
can be represented in terms of the generalized function 

dX, --~ = 1 -S(X,). 
dt 

The corresponding diagrammatic and discrete functions are given in Figs 

I(c), (4. 
We determine the dynamic behavior of discrete systems and their con- 

tinuous homologues in the following way. We first choose a logical structure 

(0) + Lb) 

x, - 
X,(T) x, ir+i) 

x2 

: 0 0 

Cc) Cd) 
Xl /---a X2 

FIG. 1. The diagrammatic (a) and truth table (b) representations of the relationship X, 
activates X2. The diagrammatic(c) and truth table (d) representations of the relationship X, 
inhibits X2. 

for a system. This logical structure may be simply represented diagram- 
matically using the symbols from Fig. 1. We then write down the switching 
network corresponding to this structure. The complete behavior of the 
switching network starting from any initial state may then be determined. 
The equation for the homologous continuous system may then be written by 
specifying Fin equation (1) using equations (3) and (5). After selection of an 
appropriate expression for the sigmoidal function for example, equation (4), 
and the parameters in equation (l), the continuous equation is solved on a 
digital computer. In choosing the parameters for equation (1) the only 
requirements which we make are: 

(a) the functions S(X) must be sigmoidal; they must be monotonic and 
have distinct upper and lower asymptotes; 
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(b) the parameters must be chosen so that if a chemical is produced at 
either its maximal or basal rate the target control function must be 
either on its upper or lower asymptote. 

To make comparisons between the continuous and switching networks we 
define the state of a component in a continuous network to be 1 if its total 
concentration as a function of time is increasing, and 0 if it is decreasing. In 
what follows, when we refer to the state ofa continuous system we refer to the 
binary discrete state specified in this way, by examining the first derivatives 
of each component. A set of concentrations for which the first derivatives 
of each component of a continuous system are zero, will be called a steady 
state. 

3. The Mapping 
There is an important difference between the dynamic behavior of a con- 

tinuous differential system and its discrete homologue. In a discrete system, 
time is quantized and there is no restriction on the Hamming distance 
(see Appendix A) between two consecutive states. For a continuous 
system, however, in which there are finite time lags due to diffusion, and 
thresholds, production and decay constants vary for different components, 
only the state of one component as measured by its first derivative will be 
expected to change at any given time. The length of time between changes of 
state may vary, but the Hamming distance between consecutive states is, in 
general, 1. 

We have found from computer simulations that the homologous discrete 
network for a given continuous system imposes severe restrictions on these 
consecutive states which may be summarized by the following rule. 

Determine the derivative state of a continuous system. The next con- 
secutive state in the continuous system lies on a shortest path (see 
Appendix A) between the first state and the next state to which the 
discrete homologue goes when placed in the homologous first state. 

This rule, together with the observation that consecutive states in continuous 
networks have a Hamming distance of 1, makes the following construction 
of practical importance in determining the qualitative dynamics of a con- 
tinuous system if its discrete homologue is known. 

A Boolean system of N components has 2N different states. For N = 2,3,4 
we can map these states onto a torus so that each state appears only once and 
lies next to the N states which differ from it by a Hamming distance of 1. 
In Figs 2(a), (b), (c) we give a representation of the toroidal map on the plane 
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FIG. 2. A representation of the toroidal map on a plane for two-, three- and four-component 
networks, (a), (b), and (c) respectively. To reconstruct the toroidal map, we first join opposite 
edges of each square to form a cylinder, and then join the open ends of the cylinder to form 
a torus. 

for 2, 3 and 4 component networks respectively. In order to reconstruct the 
toroidal map we first join opposite edges of each square in Fig. 2 to form a 
cylinder, and then join the open ends of the cylinder to form a torus. To 
study the qualitative behavior of a continuous system we may proceed as 
follows. We determine the truth table for the homologous switching network. 
For each discrete state of the continuous net we then draw an arrow to all 
neighboring states lying on the shortest paths to the next discrete state 
predicted by the homologous switching net. Provided no component is an 
input to itself (note that the condition of no self-input refers to the discrete 
system and does not preclude exponential decay in the continuous system) 
in the resulting mapping each edge in the unit cell will be crossed by only one 
arrow. The qualitative dynamics of 2, 3. and 4 component systems which arc 
homologous to switching networks can in this way be represented. In the 
remainder of this paper we consider the interpretation of the resulting toroidal 
maps for some simple systems of biological interest. 
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4. Logical Analysis of Continuous Biochemical Dynamical Systems 
(A) TWO COMPONENT SYSTEMS 

Given the constraint that no component realizes a function on itself there 
are only two, two component discrete systems which have interesting (multiple 
steady states or oscillations) dynamic behavior. 

The biochemical switch 

One of these, the biochemical switch (trigger) has often been discussed 
(Delbriick, 1949; Monod & Jacob, 1961; Sugita, 1963; Simon, 1965; 
Grigorev, Polyakova & Chernavskii, 1967; Babloyantz & Nicolis, 1972) as a 
possible mechanism for cellular differentiation. We assume that there are two 
components, both of which mutually inhibit the production of the other. 
In Fig. 3, we give the diagrammatic representation for this network as well as 
the associated truth table, with its asymptotic states. There are three asymptotic 
states, the steady states 10,Ol as well as the oscillatory state (11 + 00 -+ 
11 -+ . .). From a consideration of the truth table alone, there is no u priori 
way of determining if oscillation would be expected to arise in the continuous 
system. We use the rules of section 3 to construct the toroidal map for this 
system (Fig. 3(c)). The steady states from the logical system appear as stable 
states, whereas the states of the oscillation can be recognized as unstable 
states, they can never be re-entered once they have been left (cf. discussion in 
Sugita, 1963). Using the rules developed in section 2 we may write down the 
dynamical equations for this logical network in a homogeneous medium, with 

(0) - ..- ., / 
x1 * -X: 

_-- 
- 

Cc) c- f 
IO 

0 

01 

j\_ 
\ 

I I ------ 00 

,\ / ‘(p(r+l) 

FIG. 3. The diagrammatic structure (a), truth table(b), asymptoticstates (c), and toroidal 
map (d) for the biochemical switch. 
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Hill function control. Assuming all constants for the components arc equal 
we find the equations 

dX, -=A @” 
dt 

__- - yx,, 
v+x; (6) 

Although in the discrete system, X, realizes a logical function on X,, and 
X, realizes a logical function on X,, in the continuous homologue, both X, 
and X, undergo exponential decay as well as non-linear synthesis at a rate 
determined by the other’s concentration. For n = 1, it may easily be deter- 
mined (Simon, 1965) that these equations have a single steady state. For 
n = 2, provided L/y > 28, there will be three steady states (Grigorev, 
Polyakova & Chernavskii, 1967). For example, in Fig. 4, we present a 

FIG. 4. A graphical solution for the steady states of equation (6), using the values of the 
parameters given in the text. 

graphical solution for the steady states of equation (6) for n = 2, I./y = 38. 
The state given by XI = X, = 1.218 is unstable, a saddle point, and the 
dynamical system will evolve to one of the other steady states given by 
XI = 0.388, X, = 2.628 or X, = 2.626, X2 = O-380, which are stable. 
These two stable states correspond to the steady states which were found in 
the discrete system and the toroidal map. This requires some elaboration, 
since at the steady state itself, the first derivatives of the concentrations are 
zero and it is impossible, using the first derivative rules we have presented, to 
assign any discrete state to a steady state of a continuous system. However, 
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we note that if the initial concentrations in the continuous system are different 
from their steady-state values, but fall within the concentration range spanned 
by the autonomous system (here 0*386-2.628), then the steady states will be 
approached by a transient in which the concentration of a component is 
decreasing if the value of the component in the steady state of the discrete 
system is 0, and will be increasing if the value of the component is 1. Conse- 
quently, our first derivative rule is well defined arbitrarily close to the steady 
state. At the steady state itself, the first derivatives of all components vanish, 
and the concentration of a component will be maximum (minimum) if the 
corresponding steady state in the discrete system is l(0). The asymptotic 
approach to the steady state can be seen in Figs 7(b), 9(a), 9(b) in the examples 
we discuss below. The two conditions on the parameters of equation (6) 
needed to give two steady states, n = 2, A./y > 29 should be compared with 
the conditions on the parameters which we discuss at the end of section 2. 
The general conditions correspond to clearly defined mathematical limits in 
the analysis of equation (6). Precise analysis of the critical points of the 
equations of motion of these systems becomes hopelessly tedious for slightly 
more complex systems. However, our finding for this system, that steady 
states in the discrete system give stable steady states in the continuous homo- 
logues appears to hold regardless of the complexity of the network (see 
Appendix B). 

The feedback inhibitor oscillator 

The other two component system which has interesting dynamical behavior 
has often been proposed in slightly modified forms as an underlying mechan- 
ism for generating metabolic oscillations (Monod & Jacob, 1961; Sugita, 
1963; Landahl, 1969; Walter, 1970), particularly in systems in which it is 
known that the end product of a synthetic network inhibits, via feedback to 
some early step, its own synthesis. In this system X,, induces the production 
of X, and conversely, X, represses the production of X,. In Fig. 5, we give 
the diagrammatic representation of this network as well as the associated 
truth table. There is only one asymptotic state in the discrete system an 
oscillation through all the states of the system. In the toroidal map (Fig. 5(d)), 
the oscillation remains intact, and no additional features appear. This should 
be compared with the result for the previous system in which an oscillation 
appeared in the discrete system, but not on the toroidal map. We have analyzed 
in some detail (Glass & Kauffman, 1972) the coupled continuous equations 
of the form of equation (1) for this system. For a homogeneous system the 
oscillation does not exist in the continuous system and there is a single 
asymptotic steady state. However, for a system in which the synthetic sites 
are spatially separated, a single asymptotic cycle, a stable limit cycle, is found 

T.B. 8 
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Fro. 5. The diagrammatic structure (a), truth table (b), asymptotic cycle (c), and toroidal 
map (d) for the feedback inhibitor oscillator. 

for some values of the parameters. Although the waveform of this oscillation 
may be perturbed both by changes in control functions and distance between 
catalytic sites, the phase relationships of the components of the system remain 
invariant to these modifications and the continuous system cycles through the 
states (10 -+ 11 -+ 01 -+ 00 -+ 10 -+ . . .) just as in toroidal map, and the 
discrete system. To predict, using analytic techniques, which dynamic systems 
display limit cycle oscillations is always a non-trivial task (Davis, 1962). 
However, the conclusion from the study of the feedback oscillator, that if 
there is a cycle in a continuous network there will be a closed cyclic path on 
the toroidal map in which there are the same phase relationships between 
consecutive states as in the continuous system, appears to be generally valid, 
even for more complex systems. 

(B) MULTICOMF’ONENT SYSTEMS 

The number of different dynamical systems which can be built from bio- 
chemical components multiplies rapidly as the number of components of the 
system increases. To illustrate the application of these techniques to complex 
systems we analyze the dynamics of two multicomponent systems of biological 
interest. 

A three component network-A phase dependent switch 
We have previously investigated the dynamic behavior of the three com- 

ponent network represented diagrammatically in Fig. 6(a). For some con- 
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figurations of the components two asymptotic states may be found, one a 
steady state and the other a limit cycle oscillation. In Figs 6(b), (c), (d), we give 
the truth table, the asymptotic states of the discrete network, as well as the 
toroidal map for this system. We may immediately confirm the observations 
of the previous section; the steady state of the discrete system is present in 
the continuous network, and the oscillation which is found in the continuous 
network(Fig. 7(a))(101 + 100 + 110 -+ 010 -+ 000 + 001 + 101 . . .)forms 
a closed cyclic path on the toroidal map. It is interesting to note that the 
cyclic path on the toroidal map which the continuous system realizes does not 
pass through the state (111) even though this state is on the asymptotic cycle 
of the discrete system. Since there are two asymptotic states in this network 
external perturbations to the system can induce transitions between the 
states. We have studied the effect of introducing X3 to the compartment in 
which X, is synthesized both as a function of the amount of X3 introduced 
to the system, and the phase during the oscillation at which the perturbation 
is applied (Glass & Kauffman, 1972). Small perturbations have little effect 
on the oscillation whereas a large perturbation can induce a transition at any 
phase of the oscillation. Can the logical analysis presented here offer any 

(0) 

(cl 

(b) 

(d) 

I G I I IO 
I 0 0 I ; 0 
oi I G I I 
010 00 I 
00 I I I I 
00 0 IOI 

A I 

010 III 

Oil II0 
A -l!i!sit 001 100 

-. -+ 
000 IO! 

FIG 6. The diagrammatic structure (a), truth table (b), asymptotic states (c), and toroidal 
map (d) for the three-component phase dependent switch. 
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0 20 40 60 a0 

FIG. 7. Perturbation of the phase-dependent switch by adding component X3 for two con- 
secutive time iterations to the compartment in which X, is located at state 110 for Fig. 7(a) 
and 010 for Fig. 7(b). The parameters used in Glass& Kauffman (1972) were substituted into 
equations (l)-(5). The parameters are 1 = 0.5, y  = 0.1, D = 0.4, & = & = 0.4, &, = 0.2, 
P1=1,Pa=4,P8=2,M=4,n=6. 

clue to the phase at which the network is most succeptible to external perturba- 
tion for some perturbation of intermediate magnitude ? The perturbation 
corresponds to switching the state of component X3 to 1 on the continuous 
state cycle. If this perturbation is applied to the state (010) the new slate 
derived is (011) which is the asymptotically stable state. In Fig. 7 we show the 
effect of perturbations at two different phases in the continuous oscillation. 
When the perturbation was applied at (010) (Fig. 7(b)) a transition to state 
(011) after a rather lengthy transient was observed. The same perturbation 
given during state (110) (Fig. 7(a)) has little effect and the limit cycle oscilla- 
tion is re-established. The phase of the oscillation during which the system is 
most liable to undergo transitions to the steady state under the perturbation 
described in the text, is apparently given by logical analysis presented here. 
The reader might like to confirm that the transitions on the transients after 
perturbation follow allowed paths on the toroidal map. 

A four component network-A switch with intermediates 
A trigger scheme similar to the two component scheme discussed previously 
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but in which XI and A’, do not inhibit each other directly, but rather through 
the intermediates X2 and X4 (see Monod & Jacob, 1961), is depicted in 
Fig. 8, along with the associated truth tables and asymptotic states of the 
discrete system. We have examined the behavior of the continuous equations 

I I I I 
I I I 0 
I I 0 I 
I IO0 
I 
I : I :, 
IO01 
IO00 

0 I I I 
0 I I 0 
0 I 0 I 
0 IO0 
0 0 I I 

: oOb9 
0 0 00 

0 I 0 I 
I I 0 I 

0 I 0 0 
IO0 

bl I I 
I I I I 

01 I 
I ; 

bbo I 

bE “0 b 
I 0 0 0 
00 I I 

I 
boO I A 
I 0 I 0 

(d) , I I 

1001 i 

/Ill 
4 

10’10 - 

I I IO 

t 
IO00 * 

loll 
I 

0010 * 

(cl ,’ 
II’00 

1 

,Cii 

‘, ) 

.-.“-0110 

-0101 

4 
0000 

- II01 

1 
-0100 

-.. -0111 

i 
-. -- 0001 

FIO. 8. The diagrammatic structure (a), truth table (b), asymptotic states (c), and toroidal 
map (d) for the four-component bistable switch with intermediates. 
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FIG. 9. The evolution of the four-component system to the state 1100 in Fig. 9(a), and 0011 
in Fig. 9(b) from two different, initialIy homogeneous, concentration states. 

(using equations (l)-(5)) for this system in 4 compartments with the para- 
meters for all components equal and given by 

A = 0.5, P, = 2, 
y = 0.1, P, = 1, 
D = 0.4, P3 = 3, 
8 = 0.4, P, = 4, 
n = 4. 

This specifies 16 coupled non-linear equations. We have only found two 
asymptotic states for this system corresponding to the two steady states in 
the discrete system and the toroidal map. Transients to these steady states 
starting from initial homogeneous concentrations of molecules are shown in 
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Fig. 9. Writing down the consecutive states of the continuous system we find 
the transient passing through the states 

1001 + 1011 + 1111 + 0111 -+ 0101 + 0001 -+ 0011 
for Fig. 9(a) and the states 

1001 + (1011) -+ 1111 + (1101) --f 0101 + 0100 + 
0000 + 1000 + 1010 + 1110 -+ 1111 + 1101 + 1100 

for Fig. 9(b). The states in parentheses here are not actually observed because 
of the symmetries of the initial states and the coarseness of the time iteration. 
If the reader traces out these transients on the toroidal map he will note that 
all transitions are consistent with those given on the map. Further, although 
both transients pass through the states (1111) and (0101) the transitions into 
and out of these states are different. The steady states in the continuous 
system appear as extremal steady states in which the synthetic rates of com- 
ponents are either near their maximal or minimal rates. The transients to 
these states on the toroidal map appear as unstable counterclockwise rotations 
into the stable steady states. We have not been able to find any stable oscilla- 
tions for this system. 

5. Discusalon 

In section 3 we have proposed a mapping which allows us to compare 
certain qualitative features of the dynamics of some continuous biochemical 
control networks and their discrete homologues. Although an analytical 
proof of our findings has been found only for a restricted subclass of the 
continuous dynamical systems (homogeneous, one-input systems, with 
Heaviside control, see Appendix B) in which we are interested, the results of 
the previous section indicate that our techniques are more general than we 
have so far been able to prove. The findings of the previous section may be 
summarized. 

(i) For each steady state of a discrete system, there will be a correspond- 
ing steady state in the homologous continuous system which is 
asymptotically approached at long times. 

(ii) Any oscillatory state in the continuous system will have a closed 
cyclic path on the toroidal map. 

(iii) Transients in the continuous system follow transitions consistent 
with the mapping. 

At the moment it is still not clear if this mapping will allow us to determine 
all the major qualitative features of the continuous system (critical points, 
separatrices) once its logical structure is known. However, it is clear that the 
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following properties can not be determined from the mapping, at least in all 
cases. 

(i) The stability of cycles-not all closed cyclic paths in the toroidal 
mapping represent stable limit cycle oscillations. In the feedback 
inhibitor, for example, the oscillation decays to a stable focus for 
homogeneous systems. Closed cyclic paths may also represent 
oscillations around an unstable focus in the continuous system. 

(ii) A determination of all steady states of the continuous systems-in 
the feedback inhibitor a steady state may exist, which is not repre- 
sented as a steady state in the mapping. 

(iii) The determination of the next state of the continuous system if its 
present state is known-although the mapping provides restrictions 
on this transition, it does not, in most cases allow us to definitely 
predict the next consecutive state. 

The global properties of multicomponent Boolean switching networks have 
been studied in considerable detail (Kauffman, 1969, 19714). An underlying 
assumption in this work was that the qualitative features of the discrete 
systems which were being studied, would be reproduced if a continuous 
system made of real biochemicals were built. The present work gives strong 
circumstantial evidence that this is the case. Further studies of the corres- 
pondence between the properties of discrete and continuous systems for 
many component systems will certainly be of interest. The present techniques 
will also become unwieldy for systems in which the number of components 
is larger than five or six, and appropriate generalizations must be found. 

The rules for constructing the toroidal map are strictly valid (see Appendix 
B) only for networks in which each component has a single input and realizes a 
Heaviside function. Despite these limitations, we feel the techniques developed 
here will prove a valuable analytical tool to compare the qualitative features of 
complex equations and the biological system they are supposed to represent. 
The examples given in Glass & Kauffman (1972) in which qualitative 
behaviors of continuous systems were unchanged when Heaviside functions 
were relaxed to Hill functions, suggest the toroidal map captures the 
structurally stable aspects (see Appendix B), (Thorn, 1970) of behavior 
which are insensitive to the exact form of the sigmoidal function used. 

The limitation of strict validity of the mapping to single input networks 
may not be a great limitation. First, the mapping works for at least some 
multi-input nets, for example the three component net depicted in Fig. 6. 
Second, in much larger nets of biologic interest, for example, nets with two or 
three control inputs per variable (Kauffman, 1969,1971a,b) the nets commonly 
possess asymptotic states in which very few elements change, and these 
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commonly form single input subsystems whose remaining input variables are 
constant. An example is given in Table 1. In Table 1 we give the structure of a 

TABLE 1 

The logical structure of the XI-component, two-input, randomly- 
constructed Boolean network described in the text 

Steady- Steadv- 
Component Input Input Function state Component Input Input Function stat; 

1 2 value 
.___- 

1 18 11 0101 1 
2 9 12 1100 0 
3 21 48 0111 I 
4 49 11 0110 0 
5 29 24 oooo 0 
6 32 29 1110 1 
7 38 24 0001 0 
8 47 24 0110 0 
9 18 48 1000 0 

10 29 39 0100 1 
11 29 23 0110 0 
12 33 41 0110 0 
13 50 32 1011 1 
14 41 12 0101 1 
15 9 49 0101 I 
16 10 25 0111 1 
17 6 16 1110 1 
18 45 29 oooo 0 
19 22 23 1111 1 
20 49 34 0110 031 
21 18 49 1100 0 
22 34 18 0001 14 
23 5 16 1111 1 
24 4 36 oool 0 
25 32 19 0111 0 

26 24 21 1000 
27 46 36 OOMI 
28 9 29 1001 
29 46 15 1001 
30 32 1 1011 
31 3 12 1101 
32 42 49 1001 
33 16 13 1010 
34 34 35 0011 
35 7 31 1001 
36 21 47 1101 
37 2 34 1111 
38 33 3 1011 
39 33 19 0001 
40 19 43 0011 
41 19 31 1010 
42 18 35 oooo 
43 49 33 oooo 
44 11 22 0111 
45 32 46 0111 
46 40 25 1001 
47 43 38 0101 
48 39 44 oml 
49 16 ? 

IO 
loo0 

50 21 OQol 

1 2 
- 

0 
0 
0 
1 
0 
1 
1 
1 

1.0 
0 
1 
1 
1 
0 
0 

:, 
0 
1 
0 
1 
0 
0 
0 
0 

randomly constructed, two input Boolean switching network of fifty com- 
ponents. For each component we designate the Boolean function realized on 
the inputs in a standard way; for example, the truth table for component X, is, 

Xl, x11 (4 Xl (t+l) --~- 
1 1 0 
1 0 
0 1 
0 0 



122 L. GLASS AND S. A. KAUFFMAN 

The network has a cyclic asymptotic state in which all the variables are con- 
stant except three, X2,,, XZZ, X34, which oscillate through two states. In the 
constant background provided by all the other 47 components remaining at 
their asymptotic values, these three components form the one-input switching 
network which is indicated in Fig. 10. Here, since X3, realizes a function on 
itself, in the toroidal mapping (Fig. 10(d)) edges may be crossed by arrows 
from two directions corresponding to the oscillation of A’,, between the 
states 1 and 0. Since no possible phase relation of the three oscillating 

(b) (bl 

id) 

~3‘?xzo% (rJ 
I I I 
I IO 
I 0 I 

7 

0 0 
0 I I 
0 I 0 

0 0 I 

0 00 

FIO. 10. The diagrammatic structure (a), truth table (b), asymptotic states (c) and toroidal 
map (d) for the three-component switching network embedded in the 50-component network 
discussed in the text. 

variables can perturb the remaining 47 from their steady state, in continuous 
realizations of this network we would anticipate a steady state of the 47 
components in which dynamically interesting and perhaps functionally 
important behavior of the three oscillating components is embedded. We 
may thus reduce the study of dynamics of the system of 2s’ states, to a 
problem of the dynamics of 23 states, a much more manageable problem for 
which the toroidal map will be useful. The extension of this analysis to an 
arbitrary network of biological interest will only be successful if a decomposi- 
tion of the network into an active subsystem embedded in a constant back- 
ground can be found. Although there is no way of determining apriori if such 
a decomposition will hold, the conjecture that restricted regions of the 
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genome play key roles in differentiation is attractive. The dynamics of these 
regions and the subsequent regulation of differentiation could perhaps be 
studied using the techniques applied here. For systems in which there are 
more than four active components it is impossible to find a toroidal mapping 
such as we have presented here. However, since discrete Boolean systems 
can be mapped onto a hypercube it can be shown using graph theoretic 
techniques (Harary, 1969) that a mapping similar to the one presented here 
can be accomplished on a surface of genus, 

y = l+(r~-4)2”-~, 

where n is the number of components and the genus, y, is the number of 
“handles” which must be added to a sphere to form the surface. This exten- 
sion will be pursued in future work. 

Limitations of the mapping due to strict validity only for one input 
functions may prove unimportant for a deeper reason. The mapping attempts 
to provide qualitative information, not by performing the integrations which 
are so unwieldy in complex non-linear systems, but by providing an ambi- 
valent mapping from the current (derivative) state of a continuous net to all 
the next states it might go to. If the mapping does contain all possible next 
states for each state of the continuous system, then any ergodic sets in the 
mapping, must contain the asymptotic (sets of) states in the continuous net. 
It may be hoped that such ergodic sets, their sizes, the numbers of them and 
relations between them, would contain the qualitative information most 
insensitive to details of parameter values, and of most significance to the 
study of biological problems. The 50 component network discussed above, 
contains the 8 state ergodic set shown in Fig. IO(d) with the other 47 com- 
ponents constant at their steady state values listed in Table 1. 

When the mapping described in the text is invalid, (not all transitions are 
specified for some multi-input systems) it may be possible to extend it to add 
the extra next states. As long as the mapping is from one initial state to few 
subsequent ones, it should still be useful. Extending the mapping for particular 
classes of multiple input functions of biological interest, for example the 
“forcible” functions (Kauffman, 1971a,b) should be possible. 

Another interesting theoretical problem is to generalize the equations for 
which this mapping is of value. For example, it is clear that the same logical 
relationship which drives the feedback inhibitor oscillations also drives the 
predator-prey, Volterra-Lotka oscillation (Gael, Maitra & Montroll, 1971). 
However, the classical equation which has been proposed for this oscillation 
can not immediately be cast in the form of equation (2). How can one write 
down all the equations which have the same qualitative dynamics as the 
predator-prey, feedback-inhibitor oscillation? 
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The theory we discuss here should have application to experimental work 
in two ways. It should be possible to determine the logical structures of 
interesting biological and chemical oscillatory phenomena, eclosion rhythm 
(Winfree, 1970), gene puffing patterns (Berendes, 1968) and oscillating 
reactions (Zaikin & Zhabotinsky, 1970). Hopefully a knowledge of the logical 
structures of these systems would facilitate interpretation in terms of plausible 
mechanisms. 

Since the work of Monod & Jacob (1961), there have been many proposals 
that chemical networks can and some day will be synthesized in the laboratory 
which are capable of performing predetermined logical functions. From the 
analysis here, it is clear that in the synthesis of these networks, explicit 
consideration will have to be taken of the continuous properties of these 
networks. Chemical automata can be built, but the architect must be careful 
to ensure that the desired behavior will in fact, be realized in the real con- 
tinuous system. 

We have greatly benefited from conversations with the topologist, John Harper. 
SAK thanks the Alfred P. Sloan Foundation for partial support, and LG thanks the 
National Science Foundation for partial support. 
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Appendix A 

Consider two discrete states of the same number of components. The number 
of loci in which these two states differ from each other is called the Hamming 
distance. We wish to convert the first state to the second state in a number of 
discrete steps in which we change only one component in each step. If the 
Hamming distance between 2 states is n, then the minimum number of steps 
needed to make this conversion is also n, and any sequence of n steps which 
accomplishes this transition will be called a shortest path between the two 
states. Since the first step of a shortest path can be made in n ways, the 
second in (n- 1) ways and so forth, there are n factorial shortest paths 
between 2 states which have a Hamming distance, n. Each of the shortest 
paths, passes through (n- 1) of the (2”-2) states which lie on the shortest 
paths between the two initial states. The sum of the Hamming distances from 
any state lying on a shortest path between two given states, to each of these 
states, is equal to the Hamming distance between the two given states. 
Conversely, a state is on a shortest path between two given states, if the sum 
of the Hamming distances to the two states from the initial state, is equal to 
the Hamming distance between the two given states. 

Appendix B 

A dynamical system is said to be structurally stable if for a sufficiently small 
perturbation of the equations of motion of the system, the system remains 
topologically isomorphic to the unperturbed system (see Thorn, 1970). In the 
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preceding we have demonstrated a number of topological properties of 
dynamic systems given by equation (1) which are apparently dependent only 
on the logical structure of the system but not on the choice of parameters of 
the system. Further we have indicated how these properties may be studied 
using the toroidal mapping described in section 3. A formal justification for 
the mapping as well as a definite statement concerning the limits of the 
mapping, have not been offered. In this Appendix we offer two proofs of the 
properties of homogeneous systems in which the control of synthesis is 
mediated by Heaviside step functions. Since the properties we study have 
been observed to be insensitive to the precise form of the control function as 
well as the structure of the system the proofs are expected to hold for a large 
class of homologous systems. Since we cannot specify this class of systems we 
offer these proofs to make plausible our conclusions concerning the observed 
properties of continuous biochemical networks and their homologues. To 
help eliminate ambiguity in the proofs we designate all Boolean variables 
by a tilde (-). 

(A) ASYMPTOTIC STEADY STATES 

For each steady state in a logical system we specify concentrations in the 
continuous homologue, in terms of the production and decay parameters 
describing the continuous system. We then show that the concentrations we 
have specified represent a stable steady state of the continuous system. 

X(z) is a state vector of the logical variables 1, 0, at time z. The kth com- 
ponent of this vector is determined by the logical structure of the network 

X,(7+ 1) = b$Q)), t-41) 
where L, is a logical operator. The operators L,, k = 1, N where N is the 
number of components in the system completely determines the behavior 
of the discrete system. 

X is the state vector of a homologous continuous network. Call 8, the 
threshold concentrations of all targets of the kth component. 

6 < 8, 642) 

where 6 is a finite positive real number. Define an operation, M 
g”=MX C43) 

where the kth component of the vector XM is given by 
Sr = i if x, > e,, (‘44) 
spa if x, < ek. (A5) 

We now define function Hk, homologous to the logical net so that 
Iff L,{MX) = i then H,(X] = 1 646) 



and 
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Iff L,{Mx} = a then l&(X} = 0. (A7) 

For the case where L, is a function of a single locus of the logical vector X, 
the function Hk can be written in terms of the Heaviside step function on the 
homologous continuous variable. It is for this case where the toroidal mapping 
described in section 3 is strictly valid (see the following proof). For cases 
where L, is a function of several loci, Hk will not always have a simple or 
unique representation and the limitations on the phase relationships between 
consecutive states derived from the toroidal mapping will not apply. We 
anticipate that only when the logical functions are restricted to the mono- 
tonic functions (Newman & Rice, 1971) will strong constraints on the phase 
relationships of the continuous systems be observed. Let us consider the 
biochemical network 

d& 
- = Ak Hk(X) -Yk xk, dt (A@ 

where A,, yn are production and decay constants, respectively of the kth 
component and 

where E is a finite positive number. If we limit the concentration of X, so that 

o<x,<Iz” 
Yk 

and consider a closed system from equation (A@, we find that, 

if H;(X) = 1, then d& dt > 0 

and 

if Hk(X} = 0, then d&c dt G 0. 

Now assume there is a steady state in the logical net. That is, 

x,(T) = &(z+ 1) = L&@)}, k = 1,N. @12) 
Associate with this state, a concentration state in the continuous network in 
the following way 

If & = 1, then xk = Rkhk* (A131 
If& = 6, then x, = 0, (A141 

k = 1.N. 

Let us consider an arbitrary component, X,, whose concentration we assume 



128 L. GLASS AND S. A. KAUFFMAN 

to be Ii/y,. Since the maximum concentration of Xi, equation (A8) is Ajlyj, 
then 

(A151 

However, since H,(X) = 1 from equation (A6), we find, equation (A9) 

dXj > 0 
dt ’ ’ 

Equations (A15) and (A16) can both be true only if 

dXj 
dt - 

0. 

(AIf3 

(A17) 

In a similar fashion we can show that if initially Xi = 0, its first derivative 
would have also been 0. Consequently the state assigned in equations (A13) 
and (A14) is a steady state, since the first derivatives of all the components 
are 0. 

We may determine the stability of this steady state by linearizing equation 
(A7) around the concentration defined in equations (Al 3) and (A14). From the 
statements immediately preceeding equation (A2) and equation (A9) we see 
that all the off diagonal elements of this stability matrix must be 0, since no 
infinitesimal perturbation to any of the components will alter the rates of 
production of its targets. The exponential decay terms in equation (A8) 
insure that all diagonal elements will be negative. Therefore, the eigenvalues of 
the matrix are all negative, and the state defined is asymptotically stable. 

(B) PHASE RELATIONSHIPS OF COMPONENTS 

We now confine our attention to networks in which each component 
receives inputs from only one other component in the system, and in which 
the thresholds for the targets of any one component are all equal. From 
equation (A8) we confirm that the discrete state ii found from the 
operation 

Z(Q) = L{MX(t,); 6418) 

is the same state obtained by assigning the Boolean variable i to all variables 
whose first derivative is increasing and 0 to all variables whose first derivative 
is decreasing. These relationships are depicted in Fig. 1 I. The state g(zl + 1) 
is the subsequent discrete state in this Boolean system. 

Now consider some time t, > t, at which a single component which had 
previously been above (or below) its threshold at t,, has passed its t,hreshold 
and is below (or above) this value. Define the states X(t,), x”(z,), Z(T,) in an 
analogous way to the states in Fig. 11. By definition g”(z,) differs from 
gM(ti) in only one, say thejth locus. In thejth locus g”(z,) must have the 



BIOCHEMICAL CONTROL NETWORKS 129 

M 
x (t,) ---jy(T,? 

I I 

I 
I 

L 

1 
kit,, .- -2 (r,) 

FIG. 11. The relationships between the states X(r,), ?(rl), !@‘(q), X(T~), X(T~ fl). See 
Appendix B for details. 

same value as g(r,). If a value was above (or below) threshold its first 
derivative must have been decreasing (increasing) in order for it to pass the 
threshold. 

The states 8(r,), g(r,) are derived by applying the same operations, L, 
to two states which differ in only the,jth locus. They will therefore only differ 
from each other in the loci which are the targets of thejth locus. If there are k 
targets of the jth locus the Hamming distance between g(r,) and x(rl) will 
therefore be k. Now since the jth locus is the same in %(.(z,) and ff”(rZ) the 
targets of this locus will be the same in the derived states, namely g(z, + 1) 
and a(~~), respectively. If the Hamming distance between Z%(r,) and g(z, + 1) 
is n, the Hamming distance between g(r,) and Z%(ri + 1) will be IZ- k. Since 
the sum of the Hamming distances from fz(r,) to 8(r,) and x(7, + I), is 
equal to the Hamming distance from g(ri) to g(rr + l), g(zz) lies on the 
shortest path between these states (see Appendix A). 

T.B. 


