
To	help	me	understand	and	perhaps	implement	Kalman	filtering,	this	cheat	sheet	condenses	and	complements	the
explanation	of	the	Kalman	filter	in	Bishop	PRML	(pdf)	section	13.3.	I'm	having	trouble	with	math	typesetting	on	the
web,	so	here's	the	markdown	and	pdf	of	this	post.

--

The	Kalman	filter
The	Kalman	filter	is	a	statistical	model	often	used	for	tracking	objects	through	space.	It	uses	a	sequence	of	hidden
variables	(below)	that	follows	a	discrete	random	walk.	These	are	related	to	the	observed	data	(below)	via	a
regression-like	model:	linear	plus	Normal	noise.	Here	is	the	full	specification,	with	mnemonics	based	on	the	latin
equivalents	of	the	Greek	letters:	 .

	with	 	(mnemonic:	 rior)
	with	 	(mnemonic:	 here	it	 ctually	 oes)

	with	 	(mnemonic:	 ision	is	what	you	 an	 ee)

Bishop	covers	two	common	goals:

1.	 Predict	 	given	 .
2.	 Infer	the	parameters	 .

Building	blocks
For	these	tasks,	it	is	useful	to	define	some	building	blocks	and	simplify	them.	Bishop	does	this	through	unpleasant
matrix	identities,	results	on	multivariate	Gaussians,	and	re-use	of	conditional	independence	properties	that	he
develops	earlier	in	the	chapter	for	another	model	that	shares	the	same	structure.	I'm	just	going	to	rattle	them	off,
adding	explanation	only	where	I	couldn't	understand	Bishop's.

These	building	blocks	are	computed	recursively	with	one	forward	pass	and	one	backward	pass.	These	will	be	useful
throughout	the	post.	The	forward	recursion	provides	details	to	predict	 	given	 .	The	backward	recursion
allows	predictions	of	 	including	all	of	 .	An	EM	alorithm	for	inference	can	also	be	built	on	these	components.

Forward	recursion:

Backward	recursion:

Notes	and	explanations	to	supplement	Bishop:

You	can	start	the	forward	recursion	with	 	and	 .	For	the	backward	recursion,	you	can	set	 	and	
,	where	 	is	the	length	of	the	observed	sequence.	If	you	check	the	definitions,	you'll	see	why	these

things	should	match.	Also,	N.B.,	I	learned	the	hard	way	not	to	use	 	and	 	as	separate	variables	in	my	code.
For	the	backward	recursion,	be	careful	with	the	treacherous	mix	of	hatted	and	non-hatted	variables;	 .	I
think	you	always	use	the	hatted	version	unless	it	hasn't	been	computed	yet.	You	often	use	the	hatted	version
from	the	previous	iteration	with	the	non-hatted	version	from	the	current	iteration.
Bishop	doesn't	use	 	--	I	added	it.	Bishop	also	doesn't	explain	that	 	has	a	straightforward	meaning;	he	just
gives	the	formula.

	and	 	are	mysterious	to	me,	but	they	are	very	similar	to	the	"hat	matrices"	that	solve	regularized	and
weighted	least	squares	problems.	Check	out	the	wikipedia	articles	on	ridge	regression	and	WLS	and	tell	me	if
you	can	figure	out	more	details.
Covariance	matrices	of	the	form	 	or	 	can	arise	from	doing	a	linear	transformation	and
adding	noise.	In	those	cases,	it's	 	or	 .

zn xn

G = Γ, S = Σ

= + uz1 μ0 u ∼ N(0,)P0 P0
= A +zn zn−1 wn ∼ N(0, Γ)wn w A Γ
= C +xn zn vn ∼ N(0, Σ)vn v C Σ

zn X
A,C, , Σ, Γ,μ0 P0

zn . . .x1 xn
zn X

≡ Cov(| , . . . ,) = A A + ΓPn−1 zn x1 xn−1 Vn−1
≡ Cov(| , . . . ,) = C + ΣRn−1 xn x1 xn−1 Pn−1C

T

≡ C(C + Σ = CKn Pn−1 Pn−1C
T)−1 Pn−1 R−1n−1

≡ Cov(| , . . . ,) = (I − C)Vn zn x1 xn Kn Pn−1
≡ E(| , . . . ,) = A + (− CA)μn zn x1 xn μn−1 Kn xn μn−1

≡ A = A(A A + ΓJn Vn P −1
n Vn Vn)−1

≡ Cov(|X) = − (−)V̂ n zn Vn Jn V̂ n+1 Pn J T
n

≡ E(|X) = + (− A)μ̂n zn μn Jn μ̂n+1 μn

P0 μ0 =V̂ N VN

=μ̂N μN N
n N

V , , μ,V̂ μ̂

R P

Kn Jn

AV + ΓAT CP + ΣC T

Az + w Cz + v

http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf
https://ekernf01.github.io/files/kalman.md
https://ekernf01.github.io/files/kalman.pdf
https://en.wikipedia.org/wiki/Tikhonov_regularization
https://en.wikipedia.org/wiki/Weighted_least_squares

Learning	the	parameters
The	log	likelihood	for	the	whole	model	is	this	(plus	a	constant).	I	multiply	by	-2	just	because	it's	cleaner	to	look	at;
otherwise	there's	an	ugly	ubiquitous	 .	Multiplying	by	-2	doesn't	change	the	expectation	or	the	location	of	the
optimum.	We	just	have	to	minimize	it	instead	of	maximizing	it	later	on.

For	EM,	we	need	 	.	The	LogL	depends	on	 	via	a	linear	function	of	a	few	sufficient
stats,	so	the	following	building	blocks	are	useful	and	sufficient	for	the	update.	This	partly	depends	on	unrolling
quadratic	terms	like	 .

The	actual	update	can	be	found	separately	for	each	line	of	the	LogL	as	it	appears	above.	Unless	noted,	the	RHS	uses
only	the	"old"	parameters.	Here	is	the	result.

	(Note:	use	the	new	 	in	this	update.)

	(Note:	use	the	new	 	in	this	update.)

In	the	 	update,	Bishop	uses	 	where	I	use	 	and	vice	versa.	I	suspect	he's	wrong	because	if	 	is	rectangular,	
	works	but	 	has	the	wrong	sizes.	 	has	the	same	size	as	 	on	each	axis.

The	updates	for	 	and	 	resemble	the	classic	regression	estimate	 ,	but	they	are	transposed
because	in	a	typical	regression	looking	like	 ,	you	would	estimate	 ,	but	here	we	estimate	 .	The	variance
estimates	are	also	basically	the	same	as	linear	regression.

Testing
If	I	were	to	code	this	up,	Bishop	or	I	will	have	made	typos	(probably	already	did),	and	I	would	need	to	test	the	code
and	catch	them.	How?

Matrix	size	checks.	Most	languages	will	check	this	at	run-time	when	you	try	to	multiply	matrices	that	don't
conform.	Maybe	Rust	could	even	check	that	at	compile	time.
Visual	checks.	It	is	comforting	to	plot	and	examine	some	sample	paths	--	true,	observed,	and	filtered	--	for	a
simple	system	in	2d	or	1d.
Simulation.	It's	pretty	easy	to	run	this	model	generatively,	then	check	whether	the	recovered	parameters	and
sample	paths	are	right.	You	just	have	to	calibrate	your	expectations	when	doing	this.	For	 ,	you	won't	get	it
exactly,	ever.	For	 	or	 ,	I	suspect	it	is	impossible	to	get	a	consistent	estimate	from	a	single	sequence,	but
running	many	sequences	would	work.	The	other	parameters	probably	do	converge	with	one	long	sequence	as	

.
Simple	mode.	For	each	parameter,	I	would	want	an	option	where	it	is	constrained	to	a	simple	default	option	such
as	 	for	matrices	and	 	for	means.	It	would	be	easier	to	isolate	problems	if	I	could	run	simulations	etc	with	all	but
one	parameter	fixed.
Invariants.	With	EM,	the	observed-data	likelihood	is	supposed	to	increase	monotonically.
Existing	software.	There	is	Python	code	out	there	for	Kalman	filtering.	It	may	not	do	everything	(e.g.	EM),	but	it
could	help	in	checking	the	building	blocks.

− 12

−2LogL ≡ logdet() + (− (−)P0 z1 μ0)T P −1
0 z1 μ0

+ logdet(Γ) + (− A (− A)∑
n=2

N

zn zn−1)TΓ−1 zn zn−1

+ logdet(Σ) + (− C (− C)∑
n=1

N

xn zn)TΣ−1 xn zn

[LogL(x, z, θ)]argmaxθEz|X,θold z

E[Mz] = Tr(ME[z])zT zT

≡ E(|X) =En zn μ̂n

≡ E(|X) = +En,n znzT
n V̂ n μ̂nμ̂T

n

≡ ≡ E(|X) = +En−1,n ET
n−1,n zn−1z

T
n Jn−1V̂ n μ̂n−1μ̂

T
n

← =μ0 Ên μ1
← − =P0 En,n EnET

n V̂ 1
A ← (()∑N

n=2 En,n)−1 ∑N
n=2 En,n−1

Γ ← − A − + A1
N−1 ∑N

n=2 En,n En−1,n En,n−1A
T En−1,n−1A

T A

C ← (∑N
n=1 xnEn ∑N

n=1 En,n)−1

Σ ← − − C + C1
N

∑N
n=1 xnxT

n xnET
n C T EnxT

n En,nC T C

Σ C C T C
Cz zC T Σ x

A C (X YXT)−1XT

Y ≈ Xβ β X

z
μ0 P0

N →∞

I 0

Testing	aside,	another	implementation	consideration	is	that	you'll	have	to	invert	a	bunch	of	matrices.	One	of	the
biggest	things	Misha	Kilmer	taught	me	was	not	to	do	this	blindly.	Since	all	the	inverses	are	of	symmetric	positive
definite	matrices,	Cholesky	decomposition	and	forward+backward	substitution	would	be	a	nice	default	option.

https://mkilme01.pages.tufts.edu/

